Introduction to SSRF Operation Reliability

LI Rui, GU Ming, ZHAO Yubin, ZHANG Wenzhi, YIN Lixin

Shanghai Institute of Applied Physics 2015.04.27

- Introduction of SINAP
- Upgrade and new beamlines of SSRF
- Status of SSRF operation
- Main failures in Operation

Shanghai Institute of Applied Physics (SINAP)

Site Map

- 1. SSRF operation
- 2. SSRF Phase II , more

beamlines construction

- 3. SXFEL construction
- 4. Proton Therapy research

Energy	70~235MeV
Energy Iamination	~90
Circumferenc e	24.6m
Ramping time	0.7s
Scan area	30cm x 40cm

Proton Therapy

2014.12.30 Foundation of SAPT

Upgrade and New Beamlines of SSRF

Beam current

11, 2013 230mA

Main parameters	operator: G	Guangwei Jiao & Xu V	Vu shift plan:User Operation li	ht: Available		
urrent:231.51mA		B	ean Carrent(2013-10-31 8:00)			
egy, 5.50ev ittance: 4.1nn-rad am life time: 16.44hours tgCurrent: 5161.81AH eragePre: 1.79e-10Torr ne(x/y): 22.222/11.291	an a			— Hachine Sudy — Veer Operation		
r.beamsize: 74.3um r.beamsize: 22.0um upling: 0.60% bit(ms)x/y: 84.17/79.38um		ac 1246 mil 81	0 90 20 20 80	28 48 18		
r.beamsize: 74.3un r.beamsize: 22.0um upling: 0.60% bit(ms)x/y: 84.17/79.38um Beam Image	0 8- 3- 3- 80 10 Beamline st	a: 120: HB 61 tatus	1 86 38 29 88	28 41 18		
r, beamsize: 74.3um r, beamsize: 22.0um upling: 0.60% bit(ms)x(y: 84.17/79.38um 3eam Tmage	6 Beamline st	a 120 kū ki tatus ID status	n en an	20 en ia Beanline	ID status	Shutter Status
r, beansizie: 74.3un c, beansize: 22.0un upling: 0.60% bit(ms)z/y: 84.17/79.38un keam Image	Beamline st	a 120 x0 80 tatus 1D status 82.500mm	n ex ax ze on Shutter status Open	28 di isi Beamine 8.1701	ID status &100mm	Shutter Status Open
zbaansize: 74.3um zbaansize: 22.0um upling: 0.60% Ht[ms]x/y: 84.17/79.38um cam Image	Beamline st Beamline st Beamline st Beamline	8 128 148 18 tatus 10 status 82.500mm 82.500mm	a se za za se Shutterstatus Open Open	28 41 60 Beamline 8(170) 8(0)81	ID status &100mm -	Shutter Status Open Open
zbeansize: 74.3un beansize: 22.0un plog: 0.60% d(ms)/y: 84.17/78.38un eam Image	Beamline st Beamline st Beamline BLOBULA BLOBULA BLOBULA BLOBULA	8 23 x49 80 tatus 10 status 82.500m 82.500m 22.000m	Shutter status Open Open Open	28 KB EXT Beamline BLITUE BLOBI BLOBI	10 status 8.103mm - 180.001mm	Shutter Status Open Open Open
zbandize 74.3an i-bansize 22.0an apling: 0.60% st(ms)z/y: 84.13/79.38an eam Image	Beamline st Beamline st Beamline st Beamline BLOBULA BLOBULA BLOBULA BLOBULA BLOBULA BLOBULA	a 120 x10 x10 tatus 10 status 82.500m 82.500m 27.000m 17.000m	a tak 20 20 tak Shutterstatus Open Open Open Open	220 40 E0 Beamline 81,170; 80,031 80,031 81,073 81,178	ID status - 160.001mm -	Shutter Status Open Open Open Open Open Open
ckamäte: 743an ckamäte: 720m ukpa: 0.60% ät(mskyly: 94.17/7938an Beam Image	6 8- 8- 8- 8- 8- 8- 8- 8- 8- 8-	20 120 140 60 tatus 10 status 82.500mm 82.500mm 17.000mm 9.000mm 9.000mm	s eis 20 20 de Shutterstatus Open Open Open Open Open	220 48 40 Beamline 84,1705 84,051 84,050 84,178 84,180 84,180	ID status 8.10mm - 160.000mm - 31.002mm 30.002mm	Shutter Status Open Open Oped Oped Oped Oped Oped

我们会发有一辆被自行车,可是他却当成宝贝。生怕被人做于是上了三把物。一日他哭丧着脸跑进宿会对我们说

Fast orbit feedback

11/7/2013 12:55 to 11/9/2013 9:00 , 45 hours orbit stability X: 0.26µm (RMS) Y: 0.25 µm (RMS)

Fast orbit feedback

Timing system update

Solving the problem of missing trigger

Replacing linac MRF EVR-230RF and Guntx-200 with SINAP EVO\EVR

Jitter < 5ps, delay step 2ns, any bucket injection can be realized by one download bucket number table.

- Update low level software of timing system
- Update up level software of injection
- \succ Save the injection time, solve the problem of missing trigger.

LLRF Upgrade

Compact Clock, ADC, DAC, FPGA into one PCB

- Less cable, more reliable
- Easy maintenance

New Insertion devices commissioning

3 in-vacuum undulators for the Protein Research Facility beamlines

Orbit drift caused by the new insert device was corrected by feed forward system.

DEPU for the Dreamline

Machine Study

	Schedule AP	Practiced AP	Insertion device	Rate
Total	756 hrs	856.15 hrs	~ 288 hrs	34%
2013H2	360 hrs	321.75 hrs	~ 60 hrs	19%
2014H1	396 hrs	534.4 hrs	~ 228 hrs	43%

- ➢ 30%time: New insertion devices experimented
- > 30%time: Accelerator maintenance, LOCO, BBA, beam scraped, etc.
- > 30%time: Accelerator physics research, FOFB, coupling, etc.

Status of SSRF operation

Schedule of 2013-2014

	Sep			Oct		Nov			Dec		
1	D	D	1	U	U	1	U	U	1	U	U
2	W	Α	2	U	υ	2	U	U	2	С	U
3	Α	Α	3	U	U	3	υ	U	3	Μ	Α
4	Α	Α	4	Α	Α	4	U	U	4	Α	Α
5	Α	Α	5	В	В	5	Μ	Α	5	В	В
6	Α	Α	6	U	U	6	В	В	6	U	U
7	LB	LB	7	U	U	7	U	U	7	U	U
8	LB	LB	8	U	U	8	U	U	8	U	U
9	В	В	9	Μ	А	9	U	U	9	U	U
10	Μ	Α	10	В	В	10	U	U	10	В	В
11	В	В	11	U	U	11	U	U	11	U	U
12	U	U	12	U	U	12	В	В	12	U	U
13	U	U	13	U	U	13	В	В	13	U	U
14	U	U	14	U	U	14	U	U	14	U	U
15	U	U	15	U	U	15	U	U	15	U	U
16	U	U	16	U	U	16	U	U	16	U	U
17	U	U	17	Μ	А	17	U	U	17	В	В
18	Α	А	18	В	В	18	U	U	18	В	В
19	В	В	19	U	U	19	Μ	Α	19	U	U
20	U	U	20	U	U	20	Α	Α	20	U	U
21	U	U	21	U	U	21	В	В	21	U	U
22	U	U	22	U	U	22	U	U	22	U	U
23	U	U	23	U	U	23	U	U	23	U	U
24	Μ	Α	24	U	U	24	U	U	24	Μ	Α
25	B	В	25	M	A	25	U	U	25	A	A
26	U	U	26	Α	Α	26	U	U	26	В	В
27	U	U	27	В	В	27	U	U	27	U	U
28	U	U	28	U	U	28	В	В	28	U	U
29	U	U	29	U	U	29	U	U	29	U	U
30	В	В	30	U	U	30	U	U	30	U	U
			31	U	U	J 31		U	U		
	Sep			Oct			Nov		Dec		

	Jan			Feb		I	Mar			Apr			May	,		lune	è		July	,
1	U	U	1	D	D	1	U	U	1	Μ	Α	1	U	U	1	U	U	1	U	U
2	U	U	2	D	D	2	U	U	2	В	В	2	U	U	2	U	U	2	U	U
3	U	U	3	D	D	3	U	U	3	U	U	3	U	U	3	U	U	3	U	U
4	U	U	4	D	D	4	M	Α	4	U	υ	4	U	U	4	U	υ	4	U	U
5	U	υ	5	D	D	5	В	В	5	U	С	5	υ	U	5	В	В	5	U	υ
6	U	U	6	D	D	6	U	U	6	U	J	6	M	Α	6	U	υ	6	U	U
7	M	Μ	7	D	D	7	U	υ	7	U	U	7	Α	Α	7	U	υ	7	U	U
8	В	В	8	D	D	8	U	U	8	M	Α	8	В	В	8	U	υ	8	Μ	Α
9	U	U	9	D	D	9	U	U	9	В	В	9	В	В	9	U	U	9	В	В
10	U	U	10	D	D	10	U	U	10	В	В	10	U	U	11	M	M	10	U	U
11	U	U	11	D	D	11	M	Α	11	U	U	11	U	U	12	В	В	11	U	U
12	U	U	12	D	D	12	В	В	12	U	U	12	U	U	13	U	U	12	U	U
13	В	В	13	D	D	13	U	U	13	U	U	13	U	U	14	U	U	13	U	U
14	U	U	14	D	D	14	U	U	14	U	U	14	U	U	15	U	U	14	U	U
15	U	U	15	D	D	15	U	U	15	U	U	15	U	U	16	U	U	15	U	U
16	U	U	16	D	D	16	U	U	16	U	U	16	U	U	17	В	В	16	В	В
17	U	U	17	D	D	17	U	U	17	В	В	17	U	U	18	В	В	17	В	В
18	В	В	18	D	D	18	M	Α	18	U	U	18	U	U	19	U	U	18	Α	Α
19	В	В	19	D	D	19	В	В	19	U	U	19	U	U	20	U	U	19	Α	A
20	В	В	20	W	W	20	В	В	20	U	U	20	M	M	21	U	U	20	Α	Α
21	M	M	21	W	W	21	U	U	21	U	U	21	A	Α	22	U	U	21	D	D
22	Α	А	22	W	W	22	U	U	22	M	M	22	В	В	23	U	U	22	D	D
23	Α	Α	23	W	W	23	U	U	23	В	В	23	U	U	24	M	M	23	D	D
24	A	А	24	W	W	24	U	U	24	U	U	24	U	U	25	Α	Α	24	D	D
25	A	A	25	A	Α	25	M	A	25	U	U	25	U	U	26	A	A	25	D	D
26	А	А	26	Α	Α	26	В	В	26	U	U	26	U	U	27	В	В	26	D	D
27	D	D	27	В	В	27	В	В	27	U	U	27	M	A	28	U	U	27	D	D
28	D	D	28	В	В	28	U	U	28	U	U	28	В	В	29	U	U	28	D	D
29	D	D				29	U	U	29	U	U	29	U	U	30	U	U	29	D	D
30	D	D				30	U	U	30	U	U	30	U	U	31	U	U	30	D	D
31	D	D				31	U	U				31	U	U				31	D	D
	Jan			Feb		1	Mar			Apr			May	,		lune	9		July	

Sep - Dec, 2013

Jan - Jul, 2014

Operation schedule

Sep, 2013 – Jun, 2014

Availability

	•	供光	时间	故障	情况	机	器性能参	≫数
	时间	计划	实际	时间	次数	开机率	MTBF	MDT
	н , 1 Іы1	U	U	U	U	U	U	_ U
	1.1 - 1.6	144	144	0	0	100.00%	144.00	#DIV/0!
第1轮	1.8 - 1.20	192	188	4	6	97.92%	26.86	0.67
第2轮	2.27-3.3	72	70.15	1.85	3	97.43%	17.54	0.62
第3轮	3.5-3.10	120	117.4	2.6	3	97.83%	29.35	0.87
第4轮	3.12-3.17	120	118.13	1.87	1	98.44%	59.07	1.87
第5轮	3.20-3.24	92.6	92	0.6	1	99.35%	46.00	0.60
第6轮	3.26-3.31	96	96	0	0	100.00%	96.00	#DIV/0!
第7轮	4.2-4.15	237.33	235.4	1.93	2	99.19%	78.47	0.97
第8轮	4.17-4.21	117.34	114.04	3.3	4	97.19%	22.81	0.83
第9轮	4.23-5.5	264	264	0	0	100.00%	264.00	#DIV/0!
第10轮	5.8 - 5.19	240	238.35	1.65	1	99.31%	119.18	_ 1.65
第11轮	5.22 - 5.26	96	96	0	0	100.00%	96.00	_#DIV/0!
第12轮	5.28 - 6.9	264	264	0	0	100.00%	264.00	#DIV/0!
第13轮	6.11 - 6.22	216	213.77	2.23	3	98.97%	53.44	0.74
第14轮	6.25 - 7.7	264	262.5	1.5	1	99.43%	131.25	1.50
第15轮	7.9-7.18	168	162.52	5.48	8	96.74%	18.06	0.69
	合计	2703.27	2676.26	27.01	33	99.00%	78.71	0.82

Sep. 2013 – July. 2014 for user

	2013.09-2014.07	2013.09-2013.12	2014.01-2014.07
Schedule for user	4664.14	1960.87	2703.27
Effective for user	4604.41	1928.15	2676.26
Trip down times	57	24	33
Trip down hours	59.73	32.72	27.01
Availability	98.72%	98.33%	99.00%
MTBF	79.39 hr	77.13 hr	78.71 hr
MDT	1.05 hr	1.36 hr	0.82 hr

Availability and MTBF

Longest duration of non-stop beam for user operation: 551 hours

Hardware failure (U/B/AP)

All failures	(U/B/AP)
beam lost times	Beam lost time (hours)
110	183.36

SSRF trip times 2013.9-2014.7

SSRF malfunction hours 2013.9-2014.7

Hardware failure (User operation)

Failures (U)							
Beam lost times	Beam lost time (hours)						
57	59.73						

Four high failure systems since 2009

•RF:

Thanks for the low level RF failure times and hours, availability got 99% last year.

	Sep.	Oct.	Nov.	Dec.	Jan.	Mar.	Apr.	May	Jun.	Jul.
RMS_X	78.5	84.8	85.5	91.8	87.0	74.9	99.6	90.9	119.9	117.6
RMS_Y	108.6	82.4	85.7	84.7	78.8	88.4	110.3	120.6	123	120.0

Ways to improve reliability

• Every week

Regular operation meeting in every Monday, arranging current week project and doing a summary for last week on operation.

meeting.

Bi-weekly

Every one or two weeks, we have one day for maintenance, from 9:00AM to 5:00PM, checking and maintaining, and then warming up to inject beam.

Annual

Shut down about one month every summer and three weeks at the winter.

Maintaining work for all the system.

Upgrade on software and hardware are done constantly by all system.

Installations include new beamlines and new insertion devices.

Elog

Every operation staff can sign up and look up machine status. Once any device fails to work, he can get help from it to reduce the time to repair. Record and give a report for a update suggestion.

Spare parts

Liquid helium system has a online spare compressor which can turn to work at any time. Real time checking keeps the spare parts enough and ready to be used.

Main Failures in Operation

RF System

Main trips from 2012 to now include:

Trips over: 4 times

FBT Vacuum burst: 11 times;

Insulation vacuum burst: 4 times.

Circulator and load arc: 5 times

Trips with long break-down time:

Damaged kinds of auxiliary power

Total 12hours.

Frequently on SCC2 and SCC3.

Typically shows:

Sudden voltage decrease

Big outgas from FBT or POB

Solution: Thermal cycle / Pulse conditioning

/ CW conditioning

RF System

- During the 4-years operations of SSRF with users, many trips and problem of storage ring system have been solved, which make the system more reliable and stable for 220mA@3.5Gev beam operation.
- There are still some unsolved trips, like FBT vacuum burst, insulation vacuum burst, vibration of transmitter 3' s output. We are now trying to find the way to solve them.
- Over 600kW RF power will be demanded by the future SSRF phase-II project, which means each cavity should provide over 200kW power.
- How to overcome the multipacting and window vacuum burst will be the biggest challenge for super-conducting cavities.
- How to keep the high stability with the gradual degradation of devices will be also a big challenge.

Utility

Power grid often had a deep trip and caused the beam trip, sometimes a critical damage, for example:

- ✓ 10/26,2013, result liquid helium fail and RF shutdown suddenly, stop beam for 29.5 hours.
- ✓ 4/9,2014, caused beam stop for 13.9 hours.
- \checkmark 7/9,2014, caused beam stop 12.03hours.

		GRID	DURATION
DATE	TIVE	VARY(%)	(s)
2014.3.13	6:50:26	93.10	0.052
2014.3.16	12:03:32	82.06	0.073
2014.3.19	15:10:57	93.73	0.077
2014.3.23	7:07:16	86.15	0.095
2014.4.06	10:21:59	93.37	0.488
2014.4.09	11:12:02	71.31	0.075
2014.4.26	8:01:45	94.87	0.025
2014.4.27	12:51:28	94.98	0.112
2012.04.30	18:51:20	94.83	0.739
2014.05.11	6:43:45	79.06	0.079
2014.05.20	9:28:04	86.45	0.023
2014.05.23	12:53:06	93.89	0.021
2014.06.15	23:30:00	91.3	0.023S
2014 07 05	18:28:49	94.97	0.03
2014.07.05	21:09:08	94.70	0.03
2014.07.09	14:15:52	68.02	0.09
2014.07.10	12:30:40	91.69	0.334
	11:00:14	81.82	0.34
2014.07.12	12:32:51	91.18	0.315
	20:44:29	80.98	0.247
2014.07.15	4:02:20	89.14	0.062

PS system

PS TYPE	Number	Total trip	Converter	Digital cards	Communi cation broken- link	Repair time	MTBF (hours)	MDT (hours)
Medium PS	623	9	2	1	6	0	653.3	0
SR-Q	200	12	4	2	6	9.65	490	0.8
Huge PS	17	18	10	3	5	12.72	326.7	0.71
Total	840	39	16	6	17	22.37	150.8	0.534

MTBF and failure times of PS

MTBF and fail times of PS

Communication broken-link

SR-B Drift and trip

SR-B current had a long drift caused by ADC fault

SR-B current trip caused by utility trip, with low open loop gain

Maintenance

Annual clean up for every PS, this type power supply can be exchanged very easy.

Huge power supply, which must be repaired in local, so it is more difficult and spend more time.

Aged cooling water pipes

Summary of power supply system

There are more than 840 power supplies in SSRF, and the MTBF is about 150 hours in 2014.

- 1. Auxiliary power fails.
- 2. The handle of the main relay (BS-Q,SR-B) was broken when it was turned on.
- 3. Cooling water pipe aged and leaked.
- 4. There are 20 power supplies in booster ring (Q & B) and in storage ring (S & B). They are cabinet structure and must be repaired in local. SR-B current drifted 0.75A over 5 days. Several ways were tried to find the problem which was caused by ADC card. This was a typical example that some problems were deep hided.
- 5. All the other power supplies are module structure, which just need exchange a spare module and repair the failure one offline.
- 6. A good designed power supply should have more margin and consequently reliable.

